Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract This report provides an overview of the content and data collected from the “Successes, Challenges, and Opportunities Plant Transformation Research in Africa” panel discussion. Organized by PlantGENE, this event brought together scientists and stakeholders across the globe to examine the complex challenges and emerging opportunities in plant transformation research in laboratories across Africa. The discussion, rooted in insights from a panel of six leading scientists, highlights critical issues including restrictive regulatory environments, prohibitive costs, and the inconsistent availability of essential research materials. Additionally, the pervasive “brain drain” phenomenon, where skilled researchers leave the continent for better opportunities, exacerbates the difficulties faced by African scientists. Despite these challenges, the report also identifies significant advancements, particularly in the growing recognition of African leadership within universities and national agricultural research systems (NARS). These institutions, supported by highly skilled faculty and motivated graduate students, are producing high-quality research that contributes to global scientific knowledge. The panelists emphasized the necessity of creating an environment that encourages African scientists to remain on the continent and address local challenges through innovative research. Strengthening intra-African networks and fostering collaborations with the global scientific community are proposed as essential strategies to achieve this. This report underscores the critical need for substantial investments from both global and African organizations, working with African governments, to support these efforts. Furthermore, it calls for science-based decision-making and fair regulatory frameworks to align with unique opportunities and risks associated with technological advancements in Africa. This paper details the observations of six panelists and analyzes the results of attendee surveys in order to document these challenges and opportunities while advocating for sustained investment and strategic partnerships to build a thriving bioeconomy across Africa.more » « less
-
SUMMARY Plant transformation is an important part of plant research and crop improvement. Transformation methods remain complex, labor intensive, and inefficient. PlantGENE is a community of scientists from academia, industry, non‐profit research institutes, and government organizations working to improve plant transformation. PlantGENE hosts virtual training, interactive webinars, and a website with career opportunities, directories, and more. The plant science community has shown great interest and support for PlantGENE.more » « less
-
Abstract Abscission, known as shattering in crop species, is a highly regulated process by which plants shed parts. Although shattering has been studied extensively in cereals and a number of regulatory genes have been identified, much diversity in the process remains to be discovered. Teff (Eragrostis tef) is a crop native to Ethiopia that is potentially highly valuable worldwide for its nutritious grain and drought tolerance. Previous work has suggested that grain shattering in Eragrostis might have little in common with other cereals. In this study, we characterize the anatomy, cellular structure, and gene regulatory control of the abscission zone (AZ) in E. tef. We show that the AZ of E. tef is a narrow stalk below the caryopsis, which is common in Eragrostis species. X-ray microscopy, scanning electron microscopy, transmission electron microscopy, and immunolocalization of cell wall components showed that the AZ cells are thin walled and break open along with programmed cell death (PCD) at seed maturity, rather than separating between cells as in other studied species. Knockout of YABBY2/SHATTERING1, documented to control abscission in several cereals, had no effect on abscission or AZ structure in E. tef. RNA sequencing analysis showed that genes related to PCD and cell wall modification are enriched in the AZ at the early seed maturity stage. These data show that E. tef drops its seeds using a unique mechanism. Our results provide the groundwork for understanding grain shattering in Eragrostis and further improvement of shattering in E. tef.more » « less
-
Smith, S M (Ed.)Abstract Research on a few model plant–pathogen systems has benefitted from years of tool and resource development. This is not the case for the vast majority of economically and nutritionally important plants, creating a crop improvement bottleneck. Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam), is an important disease in all regions where cassava (Manihot esculenta Crantz) is grown. Here, we describe the development of cassava that can be used to visualize one of the initial steps of CBB infection in vivo. Using CRISPR-mediated homology-directed repair (HDR), we generated plants containing scarless insertion of GFP at the 3’ end of CBB susceptibility (S) gene MeSWEET10a. Activation of MeSWEET10a-GFP by the transcription activator-like (TAL) effector TAL20 was subsequently visualized at transcriptional and translational levels. To our knowledge, this is the first such demonstration of HDR via gene editing in cassava.more » « less
An official website of the United States government
